Affiliation:
1. Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois
Abstract
Abstract
This paper examines the impact of the Laurentian Great Lakes (GL) on atmospheric structure, stability, and precipitation within the Chicago–Milwaukee urban corridor during the passage of the 1–2 February 2011 extratropical cyclone. This storm produced the third largest snowfall [53.8 cm (21.2 in.)] recorded in a 130-yr period in the city of Chicago. Two simulations of the storm using the Weather Research and Forecasting (WRF) Model are described: the first with the GL present, and the second with the lakes replaced with land having characteristics of adjacent shores.
The GL were found to alter the surface temperature and moisture fields in their lee during cyclone passage. The changes were limited to the layer below the frontal inversion, but were significant enough to reduce the mean sea level pressure in some locations by 2.0–2.5 hPa, and raise the surface temperature and dewpoint temperature by 2°–4°C across several states downwind. In the Chicago–Milwaukee metropolitan corridor where the heavy snow occurred, the surface temperature and dewpoint temperature increased from +3° to +6°C as a result of heating and moistening of the lower atmosphere by the GL. Enhanced convergence also occurred along the downwind shoreline. Despite these changes, the areal impact on precipitation was surprisingly small, with liquid equivalent precipitation increases exceeding 5 mm limited to a small area over metropolitan Chicago late in the storm. The reason for the limited impact appeared to be the shallow nature of the cold air mass below the frontal inversion. Nevertheless, over metropolitan Chicago, as much as 20% of the snowfall could be attributed to the presence of the GL.
Funder
National Science Foundation
Publisher
American Meteorological Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献