What Are the Sources of Mechanical Damping in Matsuno–Gill-Type Models?

Author:

Lin Jia-Lin1,Mapes Brian E.2,Han Weiqing3

Affiliation:

1. NOAA/ESRL/CIRES Climate Diagnostics Center, Boulder, Colorado

2. RSMAS, University of Miami, Miami, Florida

3. DAOS, University of Colorado, Boulder, Colorado

Abstract

Abstract The Matsuno–Gill model has been widely used to study the tropical large-scale circulations and atmosphere–ocean interactions. However, a common critique of this model is that it requires a strong equivalent linear mechanical damping to get realistic wind response and it is unclear what could provide such a strong damping above the boundary layer. This study evaluates the sources and strength of equivalent linear mechanical damping in the Walker circulation by calculating the zonal momentum budget using 15 yr (1979–93) of daily global reanalysis data. Two different reanalyses [NCEP–NCAR and 15-yr ECMWF Re-Analysis (ERA-15)] give qualitatively similar results for all major terms, including the budget residual, whose structure is consistent with its interpretation as eddy momentum flux convergence by convective momentum transport (CMT). The Walker circulation is characterized by two distinct regions: a deep convection region over the Indo-Pacific warm pool and a shallow convection region over the eastern Pacific cold tongue. These two regions are separated by a strong upper-tropospheric ridge and a strong lower-tropospheric trough in the central Pacific. The resultant pressure gradient forces on both sides require strong (approximately 5–10 days) damping to balance them because Coriolis force near the equator is too small to provide the balance. In the deep convection region, the damping is provided by CMT and advection together in both the upper and lower troposphere. In the shallow convection region, on the other hand, the damping is provided mainly by advection in the upper troposphere and by CMT in the lower troposphere. In other words, the upper-level tropical easterly jet and the low-level trade wind are both braked by CMT. These results support the use of strong damping in the Matsuno–Gill-type models but suggest that the damping rate is spatially inhomogeneous and the CMT-related damping increases with the strength of convection. Implications for GCM’s simulation of tropical mean climate are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tropical tropospheric warming pattern explained by shifts in convective heating in the Matsuno–Gill model;Quarterly Journal of the Royal Meteorological Society;2023-08-08

2. The Matsuno–Gill model on the sphere;Journal of Fluid Mechanics;2023-06-05

3. Neural‐Network Parameterization of Subgrid Momentum Transport in the Atmosphere;Journal of Advances in Modeling Earth Systems;2023-04

4. Zonal Temperature Gradients in the Tropical Free Troposphere;Journal of Climate;2022-12-15

5. The frictional layer in the observed momentum budget of the trades;Quarterly Journal of the Royal Meteorological Society;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3