The Matsuno–Gill model on the sphere

Author:

Shamir OferORCID,Garfinkel Chaim I.ORCID,Gerber Edwin P.ORCID,Paldor NathanORCID

Abstract

We extend the Matsuno–Gill model, originally developed on the equatorial $\beta$ -plane, to the surface of the sphere. While on the $\beta$ -plane the non-dimensional model contains a single parameter, the damping rate $\gamma$ , on a sphere the model contains a second parameter, the rotation rate $\epsilon ^{1/2}$ (Lamb number). By considering the different combinations of damping and rotation, we are able to characterize the solutions over the $(\gamma, \epsilon ^{1/2})$ plane. We find that the $\beta$ -plane approximation is accurate only for fast rotation rates, where gravity waves traverse a fraction of the sphere's diameter in one rotation period. The particular solutions studied by Matsuno and Gill are accurate only for fast rotation and moderate damping rates, where the relaxation time is comparable to the time on which gravity waves traverse the sphere's diameter. Other regions of the parameter space can be described by different approximations, including radiative relaxation, geostrophic, weak temperature gradient and non-rotating approximations. The effect of the additional parameter introduced by the sphere is to alter the eigenmodes of the free system. Thus, unlike the solutions obtained by Matsuno and Gill, where the long-term response to a symmetric forcing consists solely of Kelvin and Rossby waves, the response on the sphere includes other waves as well, depending on the combination of $\gamma$ and $\epsilon ^{1/2}$ . The particular solutions studied by Matsuno and Gill apply to Earth's oceans, while the more general $\beta$ -plane solutions are only somewhat relevant to Earth's troposphere. In Earth's stratosphere, Venus and Titan, only the spherical solutions apply.

Funder

National Science Foundation

Israel Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3