Regional Model Simulations of the Bodélé Low-Level Jet of Northern Chad during the Bodélé Dust Experiment (BoDEx 2005)

Author:

Todd Martin C.1,Washington Richard2,Raghavan Srivatsan1,Lizcano Gil2,Knippertz Peter3

Affiliation:

1. Department of Geography, University College London, London, United Kingdom

2. Climate Research Laboratory, Centre for the Environment, Oxford University, Oxford, United Kingdom

3. Institut für Physik der Atmosphäre, Johannes Gutenberg-Universität Mainz, Mainz, Germany

Abstract

Abstract The low-level jet (LLJ) over the Bodélé depression in northern Chad is a newly identified feature. Strong LLJ events are responsible for the emission of large quantities of mineral dust from the depression, the world’s largest single dust source, and its subsequent transport to West Africa, the tropical Atlantic, and beyond. Accurate simulation of this key dust-generating atmospheric feature is, therefore, an important requirement for dust models. The objectives of the present study are (i) to evaluate the ability of regional climate models (RCMs) and global analyses/reanalyses to represent this feature, and (ii) to determine the driving mechanisms of the LLJ and its strong diurnal cycle. Observational data obtained during the Bodélé Dust Experiment (BoDEx 2005) are utilized for comparison. When suitably configured, the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) RCM can represent very accurately many of the key features of the jet including the structure, diurnal cycle, and day-to-day variability. Surface winds are also well reproduced, including the peak winds, which activate dust emission. Model fidelity is, however, strongly dependent on the boundary layer parameterization scheme, surface roughness, and vertical resolution in the lowest layers. A model horizontal resolution of a few tens of kilometers is sufficient to resolve most of the key features of the LLJ, while in global analyses/reanalyses many features of the LLJ are not adequately represented. Idealized RCM simulations indicate that under strong synoptic forcing the surrounding orography of the Tibesti and Ennedi Mountains acts to focus the LLJ onto the Bodélé and to accelerate the jet by ∼40%. From the RCM experiments it is diagnosed that the pronounced diurnal cycle of the Bodélé LLJ is largely a result of varying eddy viscosity, with elevated heating/cooling over the Tibesti Mountains to the north as a second-order contribution.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3