Summer Dust Emissions From the Etosha Pan, Namibia: The Role of the Namib Anabatic‐Sea Breeze System

Author:

Clements Matthew1ORCID,Washington Richard1

Affiliation:

1. Climate Research Lab Oxford University Centre for the Environment Oxford UK

Abstract

AbstractThis paper utilizes Aerosol Index (AI) data from the Total Ozone Mapping Spectrometer (TOMS) instrument, along with ERA5 reanalysis data, to identify atmospheric processes contributing to the uplift of dust from the Etosha Pan through the annual cycle. Etosha is one of the most prominent source areas in the Southern Hemisphere, although very little is known about its meteorology outside of the peak dust season (August–October). Emissions in December (AI = 1.6) are shown to be comparable to those in September (AI = 1.7), the dustiest month in the TOMS record. Unlike in September however, when a nocturnal low‐level jet is the primary emission mechanism, uplift in December is associated with an anabatic‐sea breeze that develops along the Namib coast, and propagates inland to reach Etosha during the evening. The system is a response to the thermal contrast between the elevated interior plateau and the adjacent waters of the cool Benguela Upwelling System, and so is at its strongest during austral summer, when the area of maximum diabatic heating shifts south over southern Africa. Topographic channeling of the flow through the east‐west orientated Hoanib River valley is shown to facilitate the inland propagation of the anabatic‐sea breeze, and explains the persistence of the system at Etosha's latitude. Evening surface winds at Etosha, associated with the anabatic‐sea breeze, are significantly stronger in the dustier December months, when diabatic heating over the subcontinent and hence the zonal thermal gradient are enhanced.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3