Cloud-Resolving Model Applied to Nowcasting: An Evaluation of Radar Data Assimilation and Microphysics Parameterization

Author:

Vendrasco Eder P.1,Machado Luiz A. T.12,Ribeiro Bruno Z.3,Freitas Edmilson D.4,Ferreira Rute C.1,Negri Renato G.1

Affiliation:

1. a Center for Weather Forecast and Climate Studies, National Institute for Space Research (CPTEC/INPE), Cachoeira Paulista, São Paulo, Brazil

2. b Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany

3. c Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York

4. d Institute of Astronomy, Geophysics and Atmospheric Sciences, University of Sao Paulo (IAG/USP), São Paulo, Brazil

Abstract

AbstractThis research explores the benefits of radar data assimilation for short-range weather forecasts in southeastern Brazil using the Weather Research and Forecasting (WRF) Model’s three-dimensional variational data assimilation (3DVAR) system. Different data assimilation options are explored, including the cycling frequency, the number of outer loops, and the use of null-echo assimilation. Initially, four microphysics parameterizations are evaluated (Thompson, Morrison, WSM6, and WDM6). The Thompson parameterization produces the best results, while the other parameterizations generally overestimate the precipitation forecast, especially WDSM6. Additionally, the Thompson scheme tends to overestimate snow, while the Morrison scheme overestimates graupel. Regarding the data assimilation options, the results deteriorate and more spurious convection occurs when using a higher cycling frequency (i.e., 30 min instead of 60 min). The use of two outer loops produces worse precipitation forecasts than the use of one outer loop, and the null-echo assimilation is shown to be an effective way to suppress spurious convection. However, in some cases, the null-echo assimilation also removes convective clouds that are not observed by the radar and/or are still not producing rain, but have the potential to grow into an intense convective cloud with heavy rainfall. Finally, a cloud convective mask was implemented using ancillary satellite data to prevent null-echo assimilation from removing potential convective clouds. The mask was demonstrated to be beneficial in some circumstances, but it needs to be carefully evaluated in more cases to have a more robust conclusion regarding its use.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3