Assimilation of ZDR Columns for Improving the Spinup and Forecast of Convective Storms in Storm-Scale Models: Proof-of-Concept Experiments

Author:

Carlin Jacob T.1,Gao Jidong2,Snyder Jeffrey C.3,Ryzhkov Alexander V.3

Affiliation:

1. School of Meteorology, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Achieving accurate storm-scale analyses and reducing the spinup time of modeled convection is a primary motivation for the assimilation of radar reflectivity data. One common technique of reflectivity data assimilation is using a cloud analysis, which inserts temperature and moisture increments and hydrometeors deduced from radar reflectivity via empirical relations to induce and sustain updraft circulations. Polarimetric radar data have the ability to provide enhanced insight into the microphysical and dynamic structure of convection. Thus far, however, relatively little has been done to leverage these data for numerical weather prediction. In this study, the Advanced Regional Prediction System’s cloud analysis is modified from its original reflectivity-based formulation to provide moisture and latent heat adjustments based on the detection of differential reflectivity columns, which can serve as proxies for updrafts in deep moist convection and, subsequently, areas of saturation and latent heat release. Cycled model runs using both the original cloud analysis and above modifications are performed for two high-impact weather cases: the 19 May 2013 central Oklahoma tornadic supercells and the 25 May 2016 north-central Kansas tornadic supercell. The analyses and forecasts of convection qualitatively and quantitatively improve in both cases, including more coherent analyzed updrafts, more realistic forecast reflectivity structures, a better correspondence between forecast updraft helicity tracks and radar-derived rotation tracks, and improved frequency biases and equitable threat scores for reflectivity. Based on these encouraging results, further exploration of the assimilation of dual-polarization radar data into storm-scale models is warranted.

Funder

U.S. Department of Energy

National Science Foundation

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference144 articles.

1. A Multicase Comparative Assessment of the Ensemble Kalman Filter for Assimilation of Radar Observations. Part I: Storm-Scale Analyses

2. The Local Analysis and Prediction System (LAPS): Analyses of Clouds, Precipitation, and Temperature

3. Tornado Damage Estimation Using Polarimetric Radar

4. Dual-Wavelength Polarimetric Radar Analyses of Tornadic Debris Signatures

5. Brewster, K. A., 2002: Recent advances in the diabatic initialization of a non-hydrostatic numerical model. 19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction/21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., J6.3, https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47414.htm.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3