Affiliation:
1. Jiangsu Meteorological Observation Center, Nanjing 210041, China
2. College of Atmospheric Sounding, Chengdu University of Information Technology, Chengdu 610225, China
3. Key Laboratory of Atmosphere Sounding, China Meteorological Administration, Chengdu 610225, China
4. Key Laboratory of Transportation Meteorology, China Meteorological Administration, Nanjing 210041, China
Abstract
In the development of meteorological detection technology and services, weather radar undoubtedly plays a pivotal role, especially in the monitoring and early warning of severe convective weather events, where it serves an irreplaceable function. This research delves into the landscape of weather radar research from 1945 to 2024, employing scientometric methods to investigate 13,981 publications from the Web of Science (WoS) core collection database. This study aims to unravel, for the first time, the foundational structures shaping the knowledge domain of weather radar over an 80-year period, exploring general features, collaboration, co-citation, and keyword co-occurrence. Key findings reveal a significant surge in both publications and citations post-1990, peaking in 2022 with 1083 publications and 13832 citations, signaling sustained growth and interest in the field after a period of stagnation. The United States, China, and European countries emerge as key drivers of weather radar research, with robust international collaboration playing a pivotal role in the field’s rapid evolution. Analysis uncovers 30 distinct co-citation clusters, showcasing the progression of weather radar knowledge structures. Notably, deep learning emerges as a dynamic cluster, garnering attention and yielding substantial outcomes in contemporary research efforts. Over eight decades, the focus of weather radar investigations has transitioned from hardware and software enhancements to Artificial Intelligence (AI) technology integration and multifunctional applications across diverse scenarios. This study identifies four key areas for future research: leveraging AI technology, advancing all-weather observation techniques, enhancing system refinement, and fostering networked collaborative observation technologies. This research endeavors to support academics by offering an in-depth comprehension of the progression of weather radar research. The findings can be a valuable resource for scholars in efficiently locating pertinent publications and journals. Furthermore, policymakers can rely on the insights gleaned from this study as a well-organized reference point.
Funder
the Joint Research Project for Meteorological Capacity Improvement
the Key Scientific Research Projects of Jiangsu Provincial Meteorological Bureau
Key Laboratory of Atmosphere Sounding, CMA
the Innovation and Development Project of China Meteorological Administration