Verifying and Redefining the Weather Prediction Center’s Excessive Rainfall Outlook Forecast Product

Author:

Erickson Michael J.12,Albright Benjamin23,Nelson James A.2

Affiliation:

1. a Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

2. b NOAA/NWS/NCEP/Weather Prediction Center, College Park, Maryland

3. c Systems Research Group, Inc., College Park, Maryland

Abstract

AbstractThe Weather Prediction Center’s Excessive Rainfall Outlook (ERO) forecasts the probability of rainfall exceeding flash flood guidance within 40 km of a point. This study presents a comprehensive ERO verification between 2015 and 2019 using a combination of flooding observations and proxies. ERO spatial issuance frequency plots are developed to provide situational awareness for forecasters. Reliability of the ERO is assessed by computing fractional coverage of the verification within each probabilistic category. Probabilistic forecast skill is evaluated using the Brier skill score (BSS) and area under the relative operating characteristic (AUC). A “probabilistic observation” called practically perfect (PP) is developed and compared to the ERO as an additional measure of skill. The areal issuance frequency of the ERO varies spatially with the most abundant issuances spanning from the Gulf Coast to the Midwest and the Appalachians. ERO issuances occur most often in the summer and are associated with the Southwestern monsoon, mesoscale convective systems, and tropical cyclones. The ERO exhibits good reliability on average, although more recent trends suggest some ERO-defined probabilistic categories should be issued more frequently. AUC and BSS are useful bulk skill metrics, while verification against PP is useful in bulk and for shorter-term ERO evaluation. ERO forecasts are generally more skillful at shorter lead times in terms of AUC and BSS. There is no trend in ERO area size over 5 years, although ERO forecasts may be getting slightly more skillful in terms of critical success index when verified against the PP.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3