The NOAA Weather Prediction Center’s Use and Evaluation of Experimental Warn-on-Forecast System Guidance

Author:

WILSON KATIE A.1,YUSSOUF NUSRAT2,SKINNER PATRICK S.2,KNOPFMEIER KENT2,MATILLA BRIAN C2,HEINSELMAN PAMELA. L.3,ORRISON ANDREW4,OTTO RICHARD4,ERICKSON MICHAEL5

Affiliation:

1. Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma RAND Corporation, Santa Monica, CA

2. Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

4. NOAA/NCEP/Weather Prediction Center

5. NOAA/NCEP/Weather Prediction Center Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder

Abstract

This study examines use of experimental Warn-on-Forecast System (WoFS) guidance for short-term flash flood prediction at the NOAA Weather Prediction Center’s Meteorological Watch (Metwatch) desk. The WoFS guidance provides storm-scale ensemble forecasts for individual thunderstorms out to six hours and has previously shown great promise in its predictive skill for heavy rainfall events. Its operational utility was examined during 2019 and 2020 in a formal collaboration between Warn-on-Forecast scientists and Metwatch meteorologists. During that time, Metwatch meteorologists integrated real-time WoFS guidance into their Mesoscale Precipitation Discussion forecast processes and provided evaluations via a post-event survey. The survey queried impacts of WoFS guidance on their situational awareness, workload, and confidence, and Metwatch meteorologists also reported subjective assessments of model performance. Survey results highlighted the importance of viewing consistency in WoFS guidance across runs and agreement between WoFS guidance with conceptual models, other numerical weather prediction guidance, and observations. The use of WoFS tended to either maintain or slightly increase Metwatch meteorologists’ workload, while also increasing their confidence (notably for events perceived as better predicted). Of the different forecast attributes evaluated, Metwatch meteorologists reported convective mode as the attribute best predicted by WoFS. Use of WoFS guidance supported Mesoscale Precipitation Discussion decision making, including the placement and spatial extent of the product and the level of specificity provided about the related flash flood threat(s).

Publisher

National Weather Association

Subject

Management Science and Operations Research,Atmospheric Science,Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3