Do Convection-Permitting Ensembles Lead to More Skillful Short-Range Probabilistic Rainfall Forecasts over Tropical East Africa?

Author:

Cafaro Carlo1ORCID,Woodhams Beth J.2,Stein Thorwald H. M.1,Birch Cathryn E.2,Webster Stuart3,Bain Caroline L.3,Hartley Andrew3,Clarke Samantha2,Ferrett Samantha1,Hill Peter1

Affiliation:

1. a Department of Meteorology, University of Reading, Reading, United Kingdom

2. b University of Leeds, Leeds, United Kingdom

3. c Met Office, Exeter, United Kingdom

Abstract

AbstractConvection-permitting ensemble prediction systems (CP-ENS) have been implemented in the midlatitudes for weather forecasting time scales over the past decade, enabled by the increase in computational resources. Recently, efforts are being made to study the benefits of CP-ENS for tropical regions. This study examines CP-ENS forecasts produced by the Met Office over tropical East Africa, for 24 cases in the period April–May 2019. The CP-ENS, an ensemble with parameterized convection (Glob-ENS), and their deterministic counterparts are evaluated against rainfall estimates derived from satellite observations (GPM-IMERG). The CP configurations have the best representation of the diurnal cycle, although heavy rainfall amounts are overestimated compared to observations. Pairwise comparisons between the different configurations reveal that the CP-ENS is generally the most skillful forecast for both 3- and 24-h accumulations of heavy rainfall (97th percentile), followed by the CP deterministic forecast. More precisely, probabilistic forecasts of heavy rainfall, verified using a neighborhood approach, show that the CP-ENS is skillful at scales greater than 100 km, significantly better than the Glob-ENS, although not as good as found in the midlatitudes. Skill decreases with lead time and varies diurnally, especially for CP forecasts. The CP-ENS is underspread both in terms of forecasting the locations of heavy rainfall and in terms of domain-averaged rainfall. This study demonstrates potential benefits in using CP-ENS for operational forecasting of heavy rainfall over tropical Africa and gives specific suggestions for further research and development, including probabilistic forecast guidance.

Funder

Natural Environment Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3