Affiliation:
1. NOAA/Earth System Research Laboratory, Boulder, Colorado
Abstract
Abstract
The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), both operational at NOAA’s National Centers for Environmental Prediction (NCEP) use the Thompson et al. mixed-phase bulk cloud microphysics scheme. This scheme permits predicted surface precipitation to simultaneously consist of rain, snow, and graupel at the same location under certain conditions. Here, the explicit precipitation-type diagnostic method is described as used in conjunction with the Thompson et al. scheme in the RAP and HRRR models. The postprocessing logic combines the explicitly predicted multispecies hydrometeor data and other information from the model forecasts to produce fields of surface precipitation type that distinguish between rain and freezing rain, and to also portray areas of mixed precipitation. This explicit precipitation-type diagnostic method is used with the NOAA operational RAP and HRRR models. Verification from two winter seasons from 2013 to 2015 is provided against METAR surface observations. An example of this product from a January 2015 south-central United States winter storm is also shown.
Publisher
American Meteorological Society
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献