A Diagnostic Examination of the Eastern Ontario and Western Quebec Wintertime Convection Event of 28 January 2010

Author:

Milrad Shawn M.1,Gyakum John R.1,Atallah Eyad H.1,Smith Jennifer F.2

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

2. Meteorological Service of Canada, Ottawa, Ontario, Canada

Abstract

Abstract The priority of an operational forecast center is to issue watches, warnings, and advisories to notify the public about the inherent risks and dangers of a particular event. Occasionally, events occur that do not meet advisory or warning criteria, but still have a substantial impact on human life and property. Short-lived snow bursts are a prime example of such a phenomenon. While these events are typically characterized by small snow accumulations, they often cause very low visibilities and rapidly deteriorating road conditions, both of which are a major hazard to motorists. On the afternoon of 28 January 2010, two such snow bursts moved through the Ottawa River valley and lower St. Lawrence River valley, and created havoc on area roads, resulting in collisions and injuries. Using the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR), these snow bursts were found to be associated with an approaching strong upper-tropospheric trough and the passage of an arctic front. While convection or squall lines are not common in January in Canada, snow bursts are shown to be associated with strong quasigeostrophic forcing for ascent and low-level frontogenesis, in the presence of both convective and conditional symmetric instability. Finally, this paper highlights the need for the development of a standard subadvisory criterion warning of short-lived but high-impact winter weather events, which operational forecasters can issue and quickly disseminate to the general public.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3