A Climatology of Snow Squalls in Southern New England 1994–2018

Author:

Colby Frank P.1,Coe David1,Barlow Mathew1,Brown Ryan1,Krajewski Elizabeth2

Affiliation:

1. a University of Massachusetts Lowell, Lowell, Massachusetts

2. b The Weather Company, Atlanta, Georgia

Abstract

Abstract Snow squalls are sudden snow events that last less than 1 h, are characterized by low visibility and gusty winds, and can result in notable societal impacts. This analysis develops a climatology of non-lake-effect snow squall events in southern New England for 1994–2018 and investigates the synoptic environment and mesoscale factors conducive to their formation. National Weather Service surface observations were used to identify events; sea level pressure maps, composite radar charts, and a cell-tracking algorithm were used to determine their organization and movement; and ERA5 hourly reanalysis data were used to analyze the associated synoptic and infer mesoscale features, as well as convective and symmetric instability. A total of 100 events were identified and categorized into four distinct types on the basis of the direction of movement of the associated radar echoes, which is closely linked to characteristic synoptic structures and mesoscale factors. The four types are Classic (squall movement from the northwest; 72 events), Atlantic (from the southwest; 15 events), Northern (from the north; 9 events), and Special (varying; 4 events). All types have a 500-hPa trough over the Northeast but differ in the structure of the trough and its relation to lower-level flow, which accounts for the differences in movement of the squalls. The snow events occur in shallow, convective squall lines, and the ingredients for convection were present in all cases. Both upright and symmetric instability are typically present, all cases had at least one lower-tropospheric layer with cyclonic differential vorticity advection, and many cases were also associated with frontogenesis.

Funder

Division of Atmospheric and Geospace Sciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3