Forecasting Tropical Cyclone Formation in the Fiji Region: A Probit Regression Approach Using Bayesian Fitting

Author:

Chand Savin S.1,Walsh Kevin J. E.1

Affiliation:

1. School of Earth Sciences, University of Melbourne, Melbourne, Victoria, Australia

Abstract

Abstract An objective methodology for forecasting the probability of tropical cyclone (TC) formation in the Fiji, Samoa, and Tonga regions (collectively the FST region) using antecedent large-scale environmental conditions is investigated. Three separate probabilistic forecast schemes are developed using a probit regression approach where model parameters are determined via Bayesian fitting. These schemes provide forecasts of TC formation from an existing system (i) within the next 24 h (W24h), (ii) within the next 48 h (W48h), and (iii) within the next 72 h (W72h). To assess the performance of the three forecast schemes in practice, verification methods such as the posterior expected error, Brier skill scores, and relative operating characteristic skill scores are applied. Results suggest that the W24h scheme, which is formulated using large-scale environmental parameters, on average, performs better than that formulated using climatology and persistence (CLIPER) variables. In contrast, the W48h (W72h) scheme formulated using large-scale environmental parameters performs similar to (poorer than) that formulated using CLIPER variables. Therefore, large-scale environmental parameters (CLIPER variables) are preferred as predictors when forecasting TC formation in the FST region within 24 h (at least 48 h) using models formulated in the present investigation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

1. Bayesian analysis of binary and polychotomous response data;Albert;J. Amer. Stat. Assoc.,1993

2. Tropical cyclone data archive of operational records, season summaries and individual cyclone track maps for the Southern Hemisphere;ASW,2010

3. Bayesian Theory;Bernardo,2000

4. The boguscane–A serious problem with the NCEP Medium-Range Forecast model in the tropics;Beven,1999

5. Large-scale influences on tropical cyclogenesis in the western North Pacific;Briegel;Mon. Wea. Rev.,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3