Subseasonal prediction framework for tropical cyclone activity in the Solomon Islands region

Author:

Haruhiru Alick1ORCID,Chand Savin S.1,Sultanova Nargiz1,Ramsay Hamish2,Sharma Krishneel K.1,Tahani Lloyd3

Affiliation:

1. Institute of Innovation, Science and Sustainability Federation University Australia Ballarat Victoria Australia

2. CSIRO, Environment Aspendale Victoria Australia

3. Solomon Islands Meteorological Service Honiara Solomon Islands

Abstract

AbstractRecently, we developed seasonal prediction schemes with improved skill to predict tropical cyclone (TC) activity up to 3 months in advance for the Solomon Islands (SI) region (5°–15°S, 155°–170°E) using sophisticated Bayesian regression techniques. However, TC prediction at subseasonal timescale (i.e., 1–4 weeks in advance) is not being researched for that region despite growing demands from decision makers at sectoral level. In this paper, we first assess the feasibility of developing subseasonal prediction frameworks for the SI region using a pool of predictors that are known to affect TC activity in the region. We then evaluate multiple predictor combinations to develop the most appropriate models using a statistical approach to forecast weekly TC activity up to 4 weeks in advance. Predictors used include indices of various natural climate variability modes, namely the Madden–Julian Oscillation (MJO), the El Niño–Southern Oscillation (ENSO), the Indian Ocean Dipole (IOD) and the Interdecadal Pacific Oscillation (IPO). These modes often have robust physical and statistical relationships with TC occurrences in the SI region and the broader southwest Pacific territory as shown by preceding studies. Additionally, we incorporate TC seasonality as a potential predictor given the persistence of TCs occurring more in certain months than others. Note that a model with seasonality predictor alone (hereafter called the “climatology” model) forms a baseline for comparisons. The hindcast verifications of the forecasts using leave‐one‐out cross‐validation procedure over the study period 1975–2019 indicate considerable improvements in prediction skill of our logistic regression models over climatology, even up to 4 weeks in advance. This study sets the foundation for introducing subseasonal prediction services, which is a national priority for improved decision making in sectors like agriculture and food security, water, health and disaster risk mitigation in the Solomon Islands.

Funder

Department of Foreign Affairs and Trade, Australian Government

Publisher

Wiley

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3