Radar Nowcasting of Cloud-to-Ground Lightning over Houston, Texas

Author:

Mosier Richard M.1,Schumacher Courtney1,Orville Richard E.1,Carey Lawrence D.2

Affiliation:

1. Department of Atmospheric Science, Texas A&M University, College Station, Texas

2. Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Abstract

Abstract Ten years (1997–2006) of summer (June–August) daytime (1400–0000 UTC) Weather Surveillance Radar-1988 Doppler data for Houston, Texas, were examined to determine the best radar-derived predictors of the first cloud-to-ground lightning flash from a convective cell. Convective cells were tracked using a modified version of the Storm Cell Identification and Tracking (SCIT) algorithm and then correlated to cloud-to-ground lightning data from the National Lightning Detection Network (NLDN). Combinations of three radar reflectivity values (30, 35, and 40 dBZ) at four isothermal levels (−10°, −15°, −20°, and updraft −10°C) and a new radar-derived product, vertically integrated ice (VII), were used to optimize a radar-based lightning forecast algorithm. Forecasts were also delineated by range and the number of times a cell was identified and tracked by the modified SCIT algorithm. This study objectively analyzed 67 384 unique cells and 1 028 510 lightning flashes to find the best lightning forecast criteria. Results show that using 30 dBZ at the −15° or −20°C isotherm on cells within 75 km of the radar that have been tracked for at least two consecutive scans produces the best lightning forecasts with a critical success index (CSI) of 0.68. The best VII predictor values were 0.42 or 0.58 kg m−2 on cells within 75 km of the radar that have been tracked for at least two consecutive scans, producing a CSI of 0.67. Lead times for these predictors were 10.0 and 13.4 min, respectively. Lead times greater than 10 min occurred with less stringent predictors (e.g., 30 dBZ at −10°C or VII greater than 0.25 kg m−2 on cells within 125 km with a minimum track count of 2), but lower CSI values result. In general, cells tracked for multiple scans provide higher CSIs and lead times than decreasing the range from the radar or changing the reflectivity threshold and height.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3