Testing the Assumptions Underlying Ocean Mixing Methodologies Using Direct Numerical Simulations

Author:

Taylor J. R.1,de Bruyn Kops S. M.2,Caulfield C. P.3,Linden P. F.1

Affiliation:

1. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

2. Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts

3. BP Institute, and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom

Abstract

AbstractDirect numerical simulations of stratified turbulence are used to test several fundamental assumptions involved in the Osborn, Osborn–Cox, and Thorpe methods commonly used to estimate the turbulent diffusivity from field measurements. The forced simulations in an idealized triply periodic computational domain exhibit characteristic features of stratified turbulence including intermittency and layer formation. When calculated using the volume-averaged dissipation rates from the simulations, the vertical diffusivities inferred from the Osborn and Osborn–Cox methods are within 40% of the value diagnosed using the volume-averaged buoyancy flux for all cases, while the Thorpe-scale method performs similarly well in the simulation with a relatively large buoyancy Reynolds number (Reb ≃ 240) but significantly overestimates the vertical diffusivity in simulations with Reb < 60. The methods are also tested using a limited number of vertical profiles randomly selected from the computational volume. The Osborn, Osborn–Cox, and Thorpe-scale methods converge to their respective estimates based on volume-averaged statistics faster than the vertical diffusivity calculated directly from the buoyancy flux, which is contaminated with reversible contributions from internal waves. When applied to a small number of vertical profiles, several assumptions underlying the Osborn and Osborn–Cox methods are not well supported by the simulation data. However, the vertical diffusivity inferred from these methods compares reasonably well to the exact value from the simulations and outperforms the assumptions underlying these methods in terms of the relative error. Motivated by a recent theoretical development, it is speculated that the Osborn method might provide a reasonable approximation to the diffusivity associated with the irreversible buoyancy flux.

Funder

Engineering and Physical Sciences Research Council

Office of Naval Research

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3