Energy dissipation rate surrogates in incompressible Navier–Stokes turbulence

Author:

Almalkie Saba,de Bruyn Kops Stephen M.

Abstract

AbstractHigh-resolution direct numerical simulations of isotropic homogeneous turbulence are used to understand the differences between the effects of spatial intermittency on the energy dissipation rate and on surrogates for the dissipation rate that are based on measurements of a subset of the strain rate tensor. In particular, the one-dimensional longitudinal and transverse surrogates, as well as a surrogate based on the asymmetric part of the strain rate tensor, are considered. The instantaneous surrogates are studied locally, locally averaged in space and conditionally averaged to see what statistics of the dissipation rate might accurately be inferred given measurements of the surrogates. The simulations with the Reynolds numbers based on the Taylor microscale of 102–235 are highly resolved for accurate evaluation of higher-order statistics. The probability densities of the local and locally averaged surrogates are significantly different from the corresponding statistics for the dissipation rate itself. All of the surrogates are more intermittent than the dissipation rate, the transverse surrogate is more intermittent than the longitudinal and these trends are still prominent even when the fields are spatially averaged at length scales close to the integral length scale. As a consequence, the intermittency exponent computed from the moments of the locally averaged longitudinal and transverse surrogates is approximately 1.5 and 2.2 times higher, respectively, than that computed by the same method from the dissipation rate field. In addition, while different methods of computing intermittency exponent from the dissipation rate field yield the same result, different methods applied to a surrogate are inconsistent.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3