Improving Hydrologic Modeling Using Cloud-Free MODIS Flood Maps

Author:

Tran Hoang1,Nguyen Phu1,Ombadi Mohammed1,Hsu Kuolin1,Sorooshian Soroosh2,Andreadis Konstantinos3

Affiliation:

1. Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

2. Center for Hydrometeorology and Remote Sensing, Department of Civil and Environmental Engineering, and Department of Earth System Science, University of California, Irvine, Irvine, California

3. Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, Massachusetts

Abstract

Abstract Flood mapping from satellites provides large-scale observations of flood events, but cloud obstruction in satellite optical sensors limits its practical usability. In this study, we implemented the Variational Interpolation (VI) algorithm to remove clouds from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) Snow-Covered Area (SCA) products. The VI algorithm estimated states of cloud-hindered pixels by constructing three-dimensional space–time surfaces based on assumptions of snow persistence. The resulting cloud-free flood maps, while maintaining the temporal resolution of the original MODIS product, showed an improvement of nearly 70% in average probability of detection (POD) (from 0.29 to 0.49) when validated with flood maps derived from Landsat-8 imagery. The second part of this study utilized the cloud-free flood maps for calibration of a hydrologic model to improve simulation of flood inundation maps. The results demonstrated the utility of the cloud-free maps, as simulated inundation maps had average POD, false alarm ratio (FAR), and Hanssen–Kuipers (HK) skill score of 0.87, 0.49, and 0.84, respectively, compared to POD, FAR, and HK of 0.70, 0.61, and 0.67 when original maps were used for calibration.

Funder

ICIWaRM of the US Army Corps of Engineers

UNESCO’s G-WADI program

NOAA

Army Research Office

NSF

DOE

California Energy Commission

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3