The Benefits of Continental-Scale High-Resolution Hydrological Modeling in the Detection of Extreme Hydrological Events in China

Author:

Zhu Bowen1,Xie Xianhong2ORCID,Wang Yibing2,Zhao Xuehua1

Affiliation:

1. College of Water Resource Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

Abstract

High-resolution hydrological modeling is crucial for detecting extreme hydrological events and understanding fundamental terrestrial processes. However, spatial resolutions in current hydrological modeling studies have been mostly constrained to relatively coarse resolution (~10–100 km), and they therefore have a difficult time addressing flooding or drought issues with fine resolutions. In this study, a continental-scale high-resolution hydrological modeling framework (0.0625°, ~6 km) driven by remote sensing products was used to detect extreme hydrological event occurrences in China and evaluated based on the Variable Infiltration Capacity (VIC) model. The results showed that the developed model provided more detailed information than the coarser resolution models (a 0.25° and 1°), thereby capturing the timing, duration, and spatial extent of extreme hydrologic events regarding the 2012 Beijing flood and 2009/10 drought in Hai River Basin. Here, the total water storage changes were calculated based on the VIC model (−0.017 mm/year) and Gravity Recovery and Climate Experiment (GRACE) satellite (−0.203 mm/year) to reflect the water availability caused by climate change and anthropogenic factors. This study found that the 0.0625° dataset could capture detailed changes, thereby providing reliable information during occurrences of extreme hydrological events. The high-resolution model integrated with remote sensing products could be used for accurate evaluations of continental-scale extreme hydrological events and can be valuable in understanding its long-term occurrence and water resource security.

Funder

National Natural Science Foundation of China

Science and Technology Innovation Teams of Shanxi Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3