Evaluation of a Convection-Permitting Modeling of Precipitation over the Tibetan Plateau and Its Influences on the Simulation of Snow-Cover Fraction

Author:

Gao Yanhong1,Chen Fei2,Jiang Yingsha3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences and Institute of Atmospheric Sciences, Fudan University, Shanghai, China

2. National Center for Atmospheric Research, Boulder, Colorado

3. Key Laboratory of Land-Surface Process and Climate Change in Cold and Arid Regions, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China

Abstract

AbstractPrecipitation is a critical input to land surface and hydrology modeling and prediction. Dynamical downscale modeling has added value to representing precipitation, when compared with the performance of coarse-resolution reanalysis and global climate models, over the Tibetan Plateau (TP). Convection-permitting modeling (CPM) may even outperform dynamical downscale models (DDMs). In this study, 4-km CPM results were compared to 28-km DDM results for a snow season (1 October 2013–31 May 2014) over the TP. The CPM- and DDM-simulated precipitation, as well as three merged gridded precipitation datasets, were evaluated against in situ observations below 4800 m. The five precipitation datasets (CPM, DDM, CMFD, COPRPH, and TRMM) showed large differences over the TP with underestimation of TRMM and overestimation of CPM and DDM compared to observations. The most significant difference occurred in the Brahmaputra Grand Canyon. Given the substantial uncertainty in observed precipitation at high mountains, snow cover simulated by a high-resolution land data assimilation system was used to indirectly evaluate the above precipitation data using MODIS observations. Simulated snow-cover fraction was greatly underestimated using all the merged precipitation datasets. However, simulations using the DDM- and CPM-generated precipitation as input outperformed those using other gridded precipitation data, showing lower biases, higher pattern correlations, and closer probability distribution functions than runs driven by the merged precipitation. The findings of this study generally support the assumption that high-resolution CPM-produced precipitation has an added value for use in land surface and hydrology simulations in high-mountain regions without reliable in situ precipitation observations.

Funder

the Strategic Priority Research Program of Chinese Academy of Sciences

National Natural Science Foundation of China

National Center for Atmospheric Research

Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3