Cloud Radiative Feedback to the Large‐Scale Atmospheric Circulation Greatly Reduces Monsoon‐Season Wet Bias Over the Tibetan Plateau in Climate Modeling

Author:

Liu Jiarui1,Yang Kun12ORCID,Zhao Dingchi3,Wu Peili4ORCID,Wang Jiamin1,Zhou Xu2ORCID,Lin Yanluan1ORCID,Lu Hui15ORCID,Jiang Yaozhi6,Shi Jiancheng7ORCID

Affiliation:

1. Ministry of Education Key Laboratory for Earth System Modeling Department of Earth System Science Institute for Global Change Studies Tsinghua University Beijing China

2. National Tibetan Plateau Data Center State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China

3. College of Meteorology and Oceanography National University of Defense Technology Changsha China

4. Met Office Hadley Centre Exeter UK

5. Tsinghua University Beijing China

6. School of Resources and Environment University of Electronic Science and Technology of China Chengdu China

7. National Space Science Center Chinese Academy of Sciences Beijing China

Abstract

AbstractOver‐estimation of summer precipitation over the Tibetan Plateau (TP) is a well‐known and persistent problem in most climate models. This study demonstrates the impact of a Gaussian Probability Density Function cloud fraction scheme on rainfall simulations using the Weather Research and Forecasting model. It is found that this scheme in both 0.1° and 0.05° resolutions significantly reduces the wet bias through both local feedbacks and large‐scale dynamic process. Specifically, increased cloud water/ice content with this scheme reduces surface shortwave radiation, and consequently surface heat fluxes and evapotranspiration. This, in turn, dampens the large‐scale thermal effect of the TP and weakens the exaggerated monsoon circulation and low‐level moisture convergence. It is this large‐scale dynamic process that contributes the most (∼70%) to the wet bias reduction. Although this paper presents a modeling study, it highlights the cloud radiative feedback to the large‐scale dynamics and precipitation over the TP.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3