Near-Storm Environments of Outbreak and Isolated Tornadoes

Author:

Anderson-Frey Alexandra K.1,Richardson Yvette P.1,Dean Andrew R.2,Thompson Richard L.2,Smith Bryan T.2

Affiliation:

1. The Pennsylvania State University, University Park, Pennsylvania

2. Storm Prediction Center, Norman, Oklahoma

Abstract

AbstractBetween 2003 and 2015, there were 5343 outbreak tornadoes and 9389 isolated tornadoes reported in the continental United States. Here, the near-storm environmental parameter-space distributions of these two categories are compared via kernel density estimation, and the seasonal, diurnal, and geographical features of near-storm environments of these two sets of events are compared via self-organizing maps (SOMs). Outbreak tornadoes in a given geographical region tend to be characterized by greater 0–1-km storm-relative helicity and 0–6-km vector shear magnitude than isolated tornadoes in the same geographical region and also have considerably higher tornado warning-based probability of detection (POD) than isolated tornadoes. A SOM of isolated tornadoes highlights that isolated tornadoes with higher POD also tend to feature higher values of the significant tornado parameter (STP), regardless of the specific shape of the area of STP. For a SOM of outbreak tornadoes, when two outbreak environments with similarly high magnitudes but different patterns of STP are compared, the difference is primarily geographical, with one environment dominated by Great Plains and Midwest outbreaks and another dominated by outbreaks in the southeastern United States. Two specific tornado outbreaks are featured, and the events are placed into their climatological context with more nuance than typical single proximity sounding-based approaches would allow.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3