Mesoscale Variation in Diabatic Heating around Sumatra, and Its Modulation with the Madden–Julian Oscillation

Author:

Vincent Claire L.1,Lane Todd P.1

Affiliation:

1. School of Earth Sciences and ARC Centre of Excellence for Climate Extremes, The University of Melbourne, Melbourne, Victoria, Australia

Abstract

Abstract Diabatic heating in the Maritime Continent region is controlled by a unique blend of mesoscale variability associated with steep topography and complex coastlines and intraseasonal variability associated with propagating planetary-scale disturbances. In this study, the diabatic heating from a 10-yr austral summer simulation over the Maritime Continent with a 4-km horizontal grid length is analyzed with respect to diurnal, spatial, and intraseasonal variations. Results are compared, where possible, to analogous estimates from the TRMM precipitation radar. We show that the heating budget is largely a balance between latent heating and vertical advection, with rays of heating and cooling extending upward and outward from the coast evident in the advection terms, consistent with the gravity wave representation of the tropical sea breeze. By classifying rainfall into convective and stratiform components, it is shown that simulated convective heating over Sumatra peaks in MJO phases 2 and 3, while simulated stratiform heating peaks in phase 4. Similarly, spectral latent heating estimates from the TRMM Precipitation Radar show that stratiform heating peaks in phases 3 and 4, while convective heating peaks in phases 2 and 3. It is also shown that stratiform precipitation plays a greater role in offshore precipitation during the night, albeit with embedded convective cores, than over the land during the day. These results emphasize the importance of achieving a realistic representation of convective and stratiform processes in high-resolution simulations in the tropics, both for total rainfall estimates and for realistic latent heating.

Funder

Australian Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3