The Eddy-Driven Thermocline

Author:

Cessi Paola1,Fantini Maurizio2

Affiliation:

1. Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

2. ISAC-CNR, Bologna, Italy

Abstract

Abstract The role of baroclinic eddies in transferring thermal gradients laterally, and thus determining the stratification of the ocean, is examined. The hypothesis is that the density differences imposed at the surface by differential heating are a source of available potential energy that can be partially released by mesocale eddies with horizontal scales on the order of 100 km. Eddy fluxes balance the diapycnal mixing of heat and thus determine the vertical scale of penetration of horizontal thermal gradients (i.e., the depth of the thermocline). This conjecture is in contrast with the current thinking that the deep stratification is determined by a balance between diapycnal mixing and the large-scale thermohaline circulation. Eddy processes are analyzed in the context of a rapidly rotating primitive equation flow driven by specified surface temperature, with isotropic diffusion and viscosity. The barotropic component of the eddies is found to be responsible for most of the heat flux, and so the eddy transport is horizontal rather than isopycnal. This eddy transport takes place in the shallow surface layer where eddies, as well as the mean temperature, undergo diabatic, irreversible mixing. Scaling laws for the depth of the thermocline as a function of the external parameters are proposed. In the classical thermocline theory, the depth of the thermocline depends on the diffusivity, the rotation rate, and the imposed temperature gradient. In this study the authors find an additional dependence on the viscosity and on the domain width.

Publisher

American Meteorological Society

Subject

Oceanography

Reference26 articles.

1. Baroclinic instability in vertically discrete systems.;Arakawa;J. Atmos. Sci,1988

2. The Deacon Cell and the other meridional cells of the Southern Ocean.;Doos;J. Phys. Oceanogr,1994

3. Long waves and cyclone waves.;Eady;Tellus,1949

4. Linear evolution of baroclinic waves in saturated air.;Fantini;Quart. J. Roy. Meteor. Soc,1999

5. Atmosphere–Ocean Dynamics.;Gill,1982

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3