Characterizing Thunderstorm Gust Fronts near Complex Terrain

Author:

Luchetti Nicholas T.1,Friedrich Katja1,Rodell Christopher E.2,Lundquist Julie K.3

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, Colorado

2. Department of Earth, Ocean, and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada

3. Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, and National Renewable Energy Laboratory, Golden, Colorado

Abstract

ABSTRACTFire safety, aviation, wind energy, and structural-engineering operations are impacted by thunderstorm outflow boundaries or gust fronts (GFs) particularly when they occur in mountainous terrain. For example, during the 2013 Arizona Yarnell Hill Fire, 19 firefighters were killed as a result of sudden changes in fire behavior triggered by a passing GF. Knowledge of GF behavior in complex terrain also determines departure and landing operations at nearby airports, and GFs can induce exceptional structural loads on wind turbines. While most examinations of GF characteristics focus on well-organized convection in areas such as the Great Plains, here the investigation is broadened to explore GF characteristics that evolve near the complex terrain of the Colorado Rocky Mountains. Using in situ observations from meteorological towers, as well as data from wind-profiling lidars and a microwave radiometer, 24 GF events are assessed to quantify changes in wind, temperature, humidity, and turbulence in the lowest 300 m AGL as these GFs passed over the instruments. The changes in magnitude for all variables are on average weaker in the Colorado Front Range than those typically observed from organized, severe storms in flatter regions. Most events from this study experience an increase in wind speed from 1 to 8 m s−1, relative humidity from 1% to 8%, and weak vertical motion from 0.3 to 3.6 m s−1 during GF passage while temperature drops by 0.2°–3°C and turbulent kinetic energy peaks at >4 m2 s−2. Vertical profiles reveal that these changes vary little with height in the lowest 300 m.

Funder

U.S. Bureau of Land Management

Office of Energy Efficiency and Renewable Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3