Ensemble-Based Targeted Observation Method Applied to Radar Radial Velocity Observations on Idealized Supercell Low-Level Rotation Forecasts: A Proof of Concept

Author:

Kerr Christopher A.1,Wang Xuguang1

Affiliation:

1. School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract The potential future installation of a multifunction phased-array radar (MPAR) network will provide capabilities of case-specific adaptive scanning. Knowing the impacts adaptive scanning may have on short-term forecasts will influence scanning strategy decision-making in hopes to produce the most optimal ensemble forecast while also benefiting human severe weather warning decision-making. An ensemble-based targeted observation algorithm is applied to an observing system simulation experiment (OSSE) where the impacts of synthetic idealized supercell radial velocity observations are estimated before the observations are “collected” and assimilated. The forecast metric of interest is the low-level rotation forecast metric (0–1-km updraft helicity), a surrogate for tornado prediction. It is found that the ensemble-based targeted observation approach can reasonably estimate the true error variance reduction when an effective method that treats sampling error is applied, the period of model forecast is associated with less degrees of nonlinearity, and the observation information content relative to the background forecast is larger. In some scenarios, a subset of a full-volume scan assimilation produces better forecasts than all observations within the full volume. Assimilating the full-volume scan increases the number of potential spurious correlations arising between the forecast metric and radial velocity observation induced state perturbations, which may degrade the forecast metric accuracy.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meteorological Research Enabled by Rapid-Scan Radar Technology;Monthly Weather Review;2024-01

2. Enhancing Meteorological Mobile Radar Observations Through Radar Location Optimization;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Ensemble‐based estimates of the impact of potential observations;Quarterly Journal of the Royal Meteorological Society;2023-05-18

4. Impact of adaptively thinned GOES-16 all-sky radiances in an ensemble Kalman filter based WoFS;Atmospheric Research;2022-10

5. Science Applications of Phased Array Radars;Bulletin of the American Meteorological Society;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3