Wintertime Easterly and Southeasterly Airflow in the ‘Alenuihāhā Channel, Hawaii

Author:

Hitzl David Eugene1,Chen Yi-Leng1,Hsiao Feng1

Affiliation:

1. Department of Atmospheric Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawaii

Abstract

Abstract During the wintertime, easterly (E) to southeasterly (SE) flow in the Hawaiian coastal waters is frequent. These wind regimes alter the location and magnitude of channel and tip jet accelerations and the orientation and horizontal extent of the wake zones from east-northeast (ENE) trade wind conditions. The differences are the result of changes in orographic blocking by the Big Island and Maui, with respect to the prevailing wind. During an E wind event, the fastest winds over the ‘Alenuihāhā Channel (>9 m s−1) occur in the channel exit with sinking of the inversion, which rises again downstream. Although the upstream wind speed is similar to typical summer ENE trade winds (7–8 m s−1), the maximum channel wind speed is 3–4 m s−1 slower in the exit. The SE flow is characterized by maximum (~6 m s−1) northeasterly (NE) channel winds along Maui’s south shore and at the channel exit. These winds are the result of orographic blocking on the eastern end of Maui as the northwestern tail of a tip jet off the northeastern coast of the Big Island impinges on Mount Haleakalā. Channel wind speeds are modulated by the speed and direction of this tip jet, which itself varies diurnally and throughout the approach of a midlatitude cold front. Removal of the Big Island shows how the tip jet speed and orientation modulate the pressure gradients and winds in the ‘Alenuihāhā Channel. Removal of the Maui County terrain reveals the impact of orographic blocking on the occurrence of channel winds off Maui’s south shore.

Funder

National Science Foundation

Office of Insular Affairs Technical Assistance Program

University Corporation for Atmospheric Research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3