Submesoscale‐Permitting Physical/Biogeochemical Future Projections for the Main Hawaiian Islands

Author:

Friedrich T.12ORCID,Powell B. S.1,Gunnarson J. L.1ORCID,Liu G.1,Giardina S. F.1,Stuecker M. F.13ORCID,Hošeková L.1,Feloy K.1ORCID,Stock C. A.4ORCID

Affiliation:

1. Department of Oceanography University of Hawa'i at Mānoa Honolulu HI USA

2. Pacific Islands Ocean Observing System (PacIOOS) Honolulu HI USA

3. International Pacific Research Center (IPRC), University of Hawaiʻi at Mānoa Honolulu HI USA

4. NOAA Geophysical Fluid Dynamics Laboratory Princeton NJ USA

Abstract

AbstractGlobal climate models provide useful tools to forecast large‐scale anthropogenic trends and the impacts on ocean physics and marine biology and chemistry. Due to coarse spatial resolution, they typically lack the ability to represent important regional processes while underestimating mesoscale variability and vertical mixing. This means they provide limited value when it comes to regional climate projections. We developed a regional submesoscale‐permitting physical/biogeochemical model to dynamically downscale the output of a CMIP6 Earth System Model for three different Socioeconomic Pathways for the main Hawaiian Islands. We describe the methodology for downscaling the CMIP6 ocean physics and biogeochemistry along with atmospheric conditions in order to offline nest a regional model. We expect the large‐scale spatial and temporal features of the global model to be retained by the regional model, while adding representation of the regional processes that are crucial to understanding climate change on a local scale. We compare the regional model representation against both observed data and a regional reanalysis over the first two decades of the century. We show that the regional model maintains the large‐scale trends and interannual variability provided by the CMIP6 model while well‐representing the regional dynamics that drive the short‐term variability. To better illustrate the benefit of the downscaling, we present preliminary analysis of the downscaled results to examine climate impacts on the island corals that are not resolved by the global models. This analysis reveals that coastal corals are likely to experience unprecedented ocean acidification and substantial warming over the course of the century.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3