The Framework for Assimilating All-Sky GPM Microwave Imager Brightness Temperature Data in the NASA GEOS Data Assimilation System

Author:

Kim Min-Jeong1,Jin Jianjun2,El Akkraoui Amal2,McCarty Will3,Todling Ricardo3,Gu Wei2,Gelaro Ronald3

Affiliation:

1. Goddard Earth Science and Technology Research, Morgan State University, Baltimore, and Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

2. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland

3. Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, Maryland

Abstract

Abstract Satellite radiance observations combine global coverage with high temporal and spatial resolution, and bring vital information to NWP analyses especially in areas where conventional data are sparse. However, most satellite observations that are actively assimilated have been limited to clear-sky conditions due to difficulties associated with accounting for non-Gaussian error characteristics, nonlinearity, and the development of appropriate observation operators for cloud- and precipitation-affected satellite radiance data. This article provides an overview of the development of the Gridpoint Statistical Interpolation (GSI) configurations to assimilate all-sky data from microwave imagers such as the GPM Microwave Imager (GMI) in the NASA Goddard Earth Observing System (GEOS). Electromagnetic characteristics associated with their wavelengths allow microwave imager data to be highly sensitive to precipitation. Therefore, all-sky data assimilation efforts described in this study are primarily focused on utilizing these data in precipitating regions. To utilize data in cloudy and precipitating regions, state and analysis variables have been added for ice cloud, liquid cloud, rain, and snow. This required enhancing the observation operator to simulate radiances in heavy precipitation, including frozen precipitation. Background error covariances in both the central analysis and EnKF analysis in the GEOS hybrid 4D-EnVar system have been expanded to include hydrometeors. In addition, the bias correction scheme was enhanced to reduce biases associated with thick clouds and precipitation. The results from single observation experiments demonstrate the capability of assimilating all-sky microwave brightness temperature data in GEOS both when the model forecast produces excessive precipitation and too little precipitation. Additional experiments show that hydrometeors and dynamic variables such as winds and pressure are adjusted in physically consistent ways in response to the assimilation.

Funder

NASA

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3