Rainfall Mechanisms for One of the Wettest Tropical Cyclones on Record in Australia—Oswald (2013)

Author:

Deng Difei1,Ritchie Elizabeth A.1

Affiliation:

1. School of Science, University of New South Wales, Canberra, Australian Capital Territory, Australia

Abstract

Abstract Tropical Cyclone Oswald (2013) is considered to be one of the highest-impact storms to make landfall in northern Australia even though it only reached a maximum category 1 intensity on the Australian category scale. After making landfall on the west coast of Cape York Peninsula, Oswald turned southward, and persisted for more than 7 days moving parallel to the coastline as far south as 30°S. As one of the wettest tropical cyclones (TCs) in Australian history, the favorable configurations of a lower-latitude active monsoon trough and two consecutive midlatitude trough–jet systems generally contributed to the maintenance of the Oswald circulation over land and prolonged rainfall. As a result, Oswald produced widespread heavy rainfall along the east coast with three maximum centers near Weipa, Townsville, and Rockhampton, respectively. Using high-resolution WRF simulations, the mechanisms associated with TC Oswald’s rainfall are analyzed. The results show that the rainfall involved different rainfall mechanisms at each stage. The land–sea surface friction contrast, the vertical wind shear, and monsoon trough were mostly responsible for the intensity and location for the first heavy rainfall center on the Cape York Peninsula. The second torrential rainfall near Townsville was primarily a result of the local topography and land–sea frictional convergence in a conditionally unstable monsoonal environment with frictional convergence due to TC motion modulating some offshore rainfall. The third rainfall area was largely dominated by persistent high vertical wind shear forcing, favorable large-scale quasigeostrophic dynamic lifting from two midlatitude trough–jet systems, and mesoscale frontogenesis lifting.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3