Benchmarking the Raw Model-Generated Background Forecast in Rapidly Updated Surface Temperature Analyses. Part I: Stations

Author:

Hamill Thomas M.1

Affiliation:

1. Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Abstract

Abstract High-quality, high-resolution, hourly unbiased surface (2 m) temperature analyses are needed for many applications, including training and validation of statistical postprocessing applications. These temperature analyses are often generated through data assimilation procedures, whereby a background short-range gridded forecast is adjusted to newly available observations. Even with frequent updates to newly available observations, surface-temperature analysis errors and biases can be comparatively large relative to errors and biases of midtropospheric variables, especially over land, despite more near-surface in situ observations. Larger near-surface errors may have several causes, including biased background forecasts and the spatial heterogeneity of surface temperatures that results from subgrid-scale surface, vegetation, land-use, and terrain variations. Are biased raw background forecasts the predominant cause of surface temperature analysis errors? Part I of this two-part series describes a simple benchmark for evaluating the error characteristics of short-term (1 h) raw model background surface temperature forecasts. For stations with a relatively complete time series of data, it is possible to generate an hourly, diurnally, and seasonally dependent observation climatology at a station. The deviation of the current hour’s temperature observation with respect to this hour’s and Julian day’s climatology is added to the climatology for the next hour. For contiguous U.S. stations in July 2015, the station benchmark was lower in error than interpolated 1-h high-resolution numerical predictions of surface temperature from NOAA’s High-Resolution Rapid Refresh (HRRR) system, although not including full postprocessing. For August 2018, 1-h HRRR forecasts were much improved when tested against the station benchmark.

Funder

NWS/STI and MDL

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3