Benchmarking the Raw Model-Generated Background Forecast in Rapidly Updated Surface Temperature Analyses. Part II: Gridded Benchmark

Author:

Hamill Thomas M.1,Scheuerer Michael2

Affiliation:

1. Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

2. Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

Abstract

Abstract This is the second part of a series on benchmarking raw 1-h high-resolution numerical weather prediction surface-temperature forecasts from NOAA’s High-Resolution Rapid Refresh (HRRR) system. Such 1-h forecasts are commonly used to underpin the background for an hourly updated surface temperature analysis. The benchmark in this article was produced through a gridded statistical interpolation procedure using only surface observations and a diurnally, seasonally dependent gridded surface temperature climatology. The temporally varying climatologies were produced by synthesizing high-resolution monthly gridded climatologies of daily maximum and minimum temperatures over the contiguous United States with yearly and diurnally dependent estimates of the station-based climatologies of surface temperature. To produce a 1-h benchmark forecast, for a given hour of the day, say 0000 UTC, the gridded climatology was interpolated to station locations and then subtracted from the observations. These station anomalies were statistically interpolated to produce the 0000 UTC gridded anomaly. This anomaly pattern was continued for 1 h and added to the 0100 UTC gridded climatology to generate the 0100 UTC gridded benchmark forecast. The benchmark is thus a simple 1-h persistence of the analyzed deviations from the diurnally dependent climatology. Using a cross-validation procedure with July 2015 and August 2018 data, the gridded benchmark provided competitive, relatively unbiased 1-h surface temperature forecasts relative to the HRRR. Benchmark forecasts were lower in error and bias in 2015, but the HRRR system was highly competitive or better than the gridded benchmark in 2018. Implications of the benchmarking results are discussed, as well as potential applications of the simple benchmarking procedure to data assimilation.

Funder

NWS STI and MDL

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3