The Heavy Rainfall Mechanism Revealed by a Terrain-Resolving 4DVar Data Assimilation System—A Case Study

Author:

Tai Sheng-Lun1,Liou Yu-Chieng2,Chang Shao-Fan2,Sun Juanzhen3

Affiliation:

1. Pacific Northwest National Laboratory, Richland, Washington, and Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

2. Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan

3. National Center for Atmospheric Research, Boulder, Colorado

Abstract

Abstract In this research a newly developed terrain-resolving four-dimensional variational (4DVar)-based data assimilation system, Immersed Boundary Method_Variational Doppler Radar Analysis System (IBM_VDRAS), is applied to investigate the mechanisms leading to a heavy precipitation event that occurred in Taiwan during the Southwesterly Monsoon Experiment (SoWMEX) conducted in 2008. The multivariate analyses using IBM_VDRAS and surface observations reveal that the warm and moist southwesterly flow from the ocean decelerates after making landfall, forming a surface convergence zone along the coast, which is further strengthened during the passage of a prefrontal rainband. The flow ascends as it advances inland until reaching the mountains, producing persistent precipitation and the enhancement of evaporative cooling as well as a widespread high pressure zone. A very shallow (<0.4 km) layer of offshore flow can be identified over the southwestern plain, which helps to generate a quasi-stationary convergence zone near the coast. Sensitivity studies are carried out to quantify the relative importance of the contributions made by topographic blockage, evaporative cooling, and their nonlinear interaction, to the evolution of this type of convective system. The influence of the topography is identified as the dominant factor in modulating the flow structure of the rainfall system. However, it is the nonlinear interaction between terrain and evaporation that determines the distribution of the temperature and pressure fields.

Funder

Ministry of Science and Technology, Taiwan

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3