The Kinematic and Microphysical Characteristics and Associated Precipitation Efficiency of Subtropical Convection during SoWMEX/TiMREX

Author:

Chang Wei-Yu1,Lee Wen-Chau2,Liou Yu-Chieng3

Affiliation:

1. Advanced Study Program, and Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

2. Earth Observing Laboratory, National Center for Atmospheric Research, Boulder, Colorado

3. Institute of Atmospheric Physics, National Central University, Jhongli City, Taiwan

Abstract

Abstract Dual-Doppler, polarimetric radar observations and precipitation efficiency (PE) calculations are used to analyze subtropical heavy rainfall events that occurred in southern Taiwan from 14 to 17 June 2008 during the Southwest Monsoon Experiment/Terrain-Influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX) field campaign. Two different periods of distinct precipitation systems with diverse kinematic and microphysical characteristics were investigated: 1) prefrontal squall line (PFSL) and 2) southwesterly monsoon mesoscale convective system (SWMCS). The PFSL was accompanied by a low-level front-to-rear inflow and pronounced vertical wind shear. In contrast, the SWMCS had a low-level southwesterly rear-to-front flow with a uniform vertical wind field. The PFSL (SWMCS) contained high (low) lightning frequency associated with strong (moderate) updrafts and intense graupel–rain/graupel–small hail mixing (more snow and less graupel water content) above the freezing level. It is postulated that the reduced vertical wind shear and enhanced accretional growth of rain by high liquid water content at low levels in the SWMCS helped produce rainfall more efficiently (53.1%). On the contrary, the deeper convection of the PFSL had lower PE (45.0%) associated with the evaporative loss of rain and the upstream transport of liquid water to form larger stratiform regions. By studying these two events, the dependence of PE on the environmental and microphysical factors of subtropical heavy precipitation systems are investigated by observational data for the first time. Overall, the PE of the convective precipitation region (47.9%) from 14 to 17 June is similar to past studies of convective precipitation in tropical regions.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3