Assimilation of All-Sky SEVIRI Infrared Brightness Temperatures in a Regional-Scale Ensemble Data Assimilation System

Author:

Otkin Jason A.1,Potthast Roland2

Affiliation:

1. Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom, and Cooperative Institute for Meteorological Satellite Studies, Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

2. Deutscher Wetterdienst, Offenbach, Germany, and Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom

Abstract

Abstract Ensemble data assimilation experiments were performed to assess the ability of satellite all-sky infrared brightness temperatures and different bias correction (BC) predictors to improve the accuracy of short-range forecasts used as the model background during each assimilation cycle. Satellite observations sensitive to clouds and water vapor in the upper troposphere were assimilated at hourly intervals during a 3-day period. Linear and nonlinear conditional biases were removed from the infrared observations using a Taylor series polynomial expansion of the observation-minus-background departures and BC predictors sensitive to clouds and water vapor or to variations in the satellite zenith angle. Assimilating the all-sky infrared brightness temperatures without BC degraded the forecast accuracy based on comparisons to radiosonde observations. Removal of the linear and nonlinear conditional biases from the satellite observations substantially improved the results, with predictors sensitive to the location of the cloud top having the largest impact, especially when higher-order nonlinear BC terms were used. Overall, experiments employing the observed cloud-top height or observed brightness temperature as the bias predictor had the smallest water vapor, cloud, and wind speed errors, while also having less degradation to temperatures than occurred when using other predictors. The forecast errors were smaller during these experiments because the cloud-height-sensitive BC predictors were able to more effectively remove the large conditional biases for lower brightness temperatures associated with a deficiency in upper-level clouds in the model background.

Funder

University of Reading

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3