Error Model for the Assimilation of All-Sky FY-4A/AGRI Infrared Radiance Observations

Author:

Pu Dongchuan12ORCID,Wu Yali3ORCID

Affiliation:

1. School of Environment, Harbin Institute of Technology, Harbin 150006, China

2. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

3. Guangdong-Hong Kong-Macao Greater Bay Area Weather Research Center for Monitoring Warning and Forecasting (Shenzhen Institute of Meteorological Innovation), Shenzhen 518016, China

Abstract

The Advanced Geostationary Radiation Imager (AGRI) carried by the FengYun-4A (FY-4A) satellite enables the continuous observation of local weather. However, FY-4A/AGRI infrared satellite observations are strongly influenced by clouds, which complicates their use in all-sky data assimilation. The presence of clouds leads to increased uncertainty, and the observation-minus-background (O−B) differences can significantly deviate from the Gaussian distribution assumed in the variational data assimilation theory. In this study, we introduce two cloud-affected (Ca) indices to quantify the impact of cloud amount and establish dynamic observation error models to address biases between O−B and Gaussian distributions when assimilating all-sky data from FY-4A/AGRI observations. For each Ca index, we evaluate two dynamic observation error models: a two-segment and a three-segment linear model. Our findings indicate that the three-segment linear model we propose better conforms to the statistical characteristics of FY-4A/AGRI observations and improves the Gaussianity of the O−B probability density function. Dynamic observation error models developed in this study are capable of handling cloud-free or cloud-affected FY-4A/AGRI observations in a uniform manner without cloud detection.

Funder

Guangdong Provincial Basic and Applied Basic Research Fund, the Regional Joint Fund

Guangdong Meteorological Bureau project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3