Impacts of FY-4A AGRI Radiance Data Assimilation on the Forecast of the Super Typhoon “In-Fa” (2021)

Author:

Zhang XueweiORCID,Xu Dongmei,Liu Ruixia,Shen Feifei

Abstract

This study assessed the impact of assimilating the Fengyun-4A (FY-4A) Advanced Geosynchronous Radiation Imager (AGRI) observations on the Super Typhoon “In-Fa” event based on the Weather Research and Forecasting Data Assimilation (WRFDA) system of the three-dimensional variational data assimilation (3DVAR) method. It was found that the two water vapor channels 9–10 from the full-disk AGRI datasets yield relatively stable results in terms of the track forecast of In-Fa. A new cloud-detection method using a Particle Filter (PF) was firstly employed to remove the cloud-affected observations by identifying the channel’s weighting function. Compared to the other cloud-detection schemes based on the AGRI “Cloud_Binary_Mask” (CLM) products, the PF method is conducive to reducing the track error of typhoon prediction after improving the utilization of observations under clear-sky conditions. Furthermore, the proposed cycling assimilation scheme has a potential positive effect on the intensity forecast of In-Fa. It seems that assimilating the FY-4A AGRI radiance data improves the predictability of Typhoon In-Fa by adjusting the atmospheric environment.

Funder

the Second Tibetan Plateau Scientific Expedition and Research (STEP) program

Program of Shanghai Academic/Technology Research Leader

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3