Adjoint Sensitivity Analysis of High-Impact Extratropical Cyclones

Author:

Doyle James D.1,Reynolds Carolyn A.1,Amerault Clark1

Affiliation:

1. Naval Research Laboratory, Monterey, California

Abstract

Abstract The initial state sensitivity of high-impact extratropical cyclones over the North Atlantic and United Kingdom is investigated using an adjoint modeling system that includes moist processes. The adjoint analysis indicates that the 48-h forecast of precipitation and high winds associated with the extratropical cyclone “Desmond” was highly sensitive to mesoscale regions of moisture at the initial time. Mesoscale moisture and potential vorticity structures along the poleward edge of an atmospheric river at the initialization time had a large impact on the development of Desmond as demonstrated with precipitation, kinetic energy, and potential vorticity response functions. Adjoint-based optimal perturbations introduced into the initial state exhibit rapidly growing amplitudes through moist energetic processes over the 48-h forecast. The sensitivity manifests as an upshear-tilted structure positioned along the cold and warm fronts. Perturbations introduced into the nonlinear and tangent linear models quickly expand vertically and interact with potential vorticity anomalies in the mid- and upper levels. Analysis of adjoint sensitivity results for the winter 2013/14 show that the moisture sensitivity magnitude at the initial time is well correlated with the kinetic energy error at the 36-h forecast time, which supports the physical significance and importance of the mesoscale regions of high moisture sensitivities.

Funder

Naval Research Laboratory

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference102 articles.

1. Tests of an adjoint mesoscale model with explicit moist physics on the cloud scale;Amerault;Mon. Wea. Rev.,2008

2. Structure, growth rates, and tangent linear accuracy of adjoint sensitivities with respect to horizontal and vertical resolution;Ancell;Mon. Wea. Rev.,2006

3. The variability of adjoint sensitivity with respect to model physics and basic-state trajectory;Ancell;Mon. Wea. Rev.,2008

4. Badger, J., and B. J.Hoskins, 2001: Simple initial value problems and mechanisms for baroclinic growth. J. Atmos. Sci., 58, 38–49, https://doi.org/10.1175/1520-0469(2001)058<0038:SIVPAM>2.0.CO;2.

5. The quiet revolution of numerical weather prediction;Bauer;Nature,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3