The Impact of Dropsonde Data on the Performance of the NCEP Global Forecast System during the 2020 Atmospheric Rivers Observing Campaign. Part II: Dynamic Variables and Humidity

Author:

Lord Stephen J.12,Wu Xingren32,Tallapragada Vijay2ORCID,Ralph F. M.4

Affiliation:

1. a University Corporation for Atmospheric Research/CPAESS, Boulder, Colorado

2. b NOAA/NCEP Environmental Modeling Center, College Park, Maryland

3. c I. M. Systems Group, Inc., Rockville, Maryland

4. d CW3E, Scripps Institution of Oceanography, University of California, San Diego, San Diego, California

Abstract

Abstract The impact of assimilating dropsonde data from the 2020 Atmospheric River (AR) Reconnaissance (ARR) field campaign on operational numerical weather forecasts was assessed. Two experiments were executed for the period from 24 January to 18 March 2020 using the National Centers for Environmental Prediction (NCEP) Global Forecast System version 15 (GFSv15) with a four-dimensional hybrid ensemble–variational (4DEnVar) data assimilation system. The control run (CTRL) used all of the routinely assimilated data and included data from 628 ARR dropsondes, whereas the denial run (DENY) excluded the dropsonde data. Results from 17 intensive observing periods (IOPs) indicate a mixed impact for mean sea level pressure and geopotential height over the Pacific–North American (PNA) region in CTRL compared to DENY. The overall local impact over the U.S. West Coast and Gulf of Alaska for the 17 IOPs is neutral (−0.45%) for integrated vapor transport (IVT), but positive for wind and moisture profiles (0.5%–1.0%), with a spectrum of statistically significant positive and negative impacts for various IOPs. The positive dropsonde data impact on precipitation forecasts over U.S. West Coast domains appears driven, in part, by improved low-level moisture and wind fields at short-forecast lead times. Indeed, data gaps, especially for accurate and unbiased moisture profiles and wind fields, can be at least partially mitigated to improve U.S. West Coast precipitation forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference31 articles.

1. Aberson, S. D., J. Cione, C.-C. Wu, M. Bell, J. Halverson, C. Fogarty, and M. Weissmann, 2010: Aircraft observations of tropical cyclones. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan and J. D. Kepert, Eds., World Scientific, 227–240, https://doi.org/10.1142/9789814293488_0008.

2. Seeding chaos: The dire consequences of numerical noise in NWP perturbation experiments;Ancell, B. C.,2018

3. The impact of supplemental dropwindsonde data on the structure and intensity of Tropical Storm Karen (2013) in the NCEP global forecast system;Brennan, M. J.,2015

4. Adjoint sensitivity analysis of high-impact extratropical cyclones;Doyle, J. D.,2019

5. Elless, T. J., X. Wu, and V. Tallapragada, 2021: Identifying atmospheric river reconnaissance targets using ensemble forecasts. The 2021 Blue Book 1-07, 2 pp., https://wgne.net/bluebook/uploads/2021/docs/01_Elless_Travis_EnsembleForecasts,_AtmosphericRivers.pdf.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3