Identifying Key Controls on Storm Formation over the Lake Victoria Basin

Author:

Woodhams Beth J.1,Birch Cathryn E.2,Marsham John H.3,Lane Todd P.4,Bain Caroline L.5,Webster Stuart5

Affiliation:

1. University of Leeds, Leeds, United Kingdom

2. University of Leeds, Leeds, and Met Office, Exeter, United Kingdom

3. University of Leeds, and National Centre for Atmospheric Science, Leeds, United Kingdom

4. University of Melbourne, and ARC Centre of Excellence for Climate Extremes, Melbourne, Australia

5. Met Office, Exeter, United Kingdom

Abstract

Abstract The Lake Victoria region in East Africa is a hot spot for intense convective storms that are responsible for the deaths of thousands of fishermen each year. The processes responsible for the initiation, development, and propagation of the storms are poorly understood and forecast skill is limited. Key processes for the life cycle of two storms are investigated using Met Office Unified Model convection-permitting simulations with 1.5 km horizontal grid spacing. The two cases are analyzed alongside a simulation of a period with no storms to assess the roles of the lake–land breeze, downslope mountain winds, prevailing large-scale winds, and moisture availability. While seasonal changes in large-scale moisture availability play a key role in storm development, the lake–land-breeze circulation is a major control on the initiation location, timing, and propagation of convection. In the dry season, opposing offshore winds form a bulge of moist air above the lake surface overnight that extends from the surface to ~1.5 km and may trigger storms in high CAPE/low CIN environments. Such a feature has not been explicitly observed or modeled in previous literature. Storms over land on the preceding day are shown to alter the local atmospheric moisture and circulation to promote storm formation over the lake. The variety of initiation processes and differing characteristics of just two storms analyzed here show that the mean diurnal cycle over Lake Victoria alone is inadequate to fully understand storm formation. Knowledge of daily changes in local-scale moisture variability and circulations are keys for skillful forecasts over the lake.

Funder

Natural Environment Research Council

Australian Research Council

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3