An Evaluation of Tropical Cyclone Genesis Forecasts from Global Numerical Models

Author:

Halperin Daniel J.1,Fuelberg Henry E.1,Hart Robert E.1,Cossuth Joshua H.1,Sura Philip1,Pasch Richard J.2

Affiliation:

1. The Florida State University, Tallahassee, Florida

2. National Hurricane Center, Miami, Florida

Abstract

Abstract Tropical cyclone (TC) forecasts rely heavily on output from global numerical models. While considerable research has investigated the skill of various models with respect to track and intensity, few studies have considered how well global models forecast TC genesis in the North Atlantic basin. This paper analyzes TC genesis forecasts from five global models [Environment Canada's Global Environment Multiscale Model (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF) global model, the Global Forecast System (GFS), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Met Office global model (UKMET)] over several seasons in the North Atlantic basin. Identifying TCs in the model is based on a combination of methods used previously in the literature and newly defined objective criteria. All model-indicated TCs are classified as a hit, false alarm, early genesis, or late genesis event. Missed events also are considered. Results show that the models' ability to predict TC genesis varies in time and space. Conditional probabilities when a model predicts genesis and more traditional performance metrics (e.g., critical success index) are calculated. The models are ranked among each other, and results show that the best-performing model varies from year to year. A spatial analysis of each model identifies preferred regions for genesis, and a temporal analysis indicates that model performance expectedly decreases as forecast hour (lead time) increases. Consensus forecasts show that the probability of genesis noticeably increases when multiple models predict the same genesis event. Overall, this study provides a climatology of objectively identified TC genesis forecasts in global models. The resulting verification statistics can be used operationally to help refine deterministic and probabilistic TC genesis forecasts and potentially improve the models examined.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Cyclone Detection System Using Deep Learning;2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems (ICITEICS);2024-06-28

2. Influence of Local Water Vapor Analysis Uncertainty on Ensemble Forecasts of Tropical Cyclogenesis Using Hurricane Irma (2017) as a Testbed;Monthly Weather Review;2024-06

3. Predicting Tropical Cyclones;Advances in Computational Intelligence and Robotics;2024-05-31

4. An Evaluation of Tropical Cyclone Genesis Forecast over the Western North Pacific and the South China Sea from the CMA-TRAMS;Journal of Tropical Meteorology;2024-03-01

5. Predicting Tropical Cyclone Formation with Deep Learning;Weather and Forecasting;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3