Predicting Tropical Cyclone Formation with Deep Learning

Author:

Nguyen Quan1,Kieu Chanh1ORCID

Affiliation:

1. a Department of Earth and Atmospheric Sciences, Indiana University–Bloomington, Bloomington, Indiana

Abstract

Abstract Exploring new techniques to improve the prediction of tropical cyclone (TC) formation is essential for operational practice. Using convolutional neural networks, this study shows that deep learning can provide a promising capability for predicting TC formation from a given set of large-scale environments at certain forecast lead times. Specifically, two common deep-learning architectures including the residual net (ResNet) and UNet are used to examine TC formation in the Pacific Ocean. With a set of large-scale environments extracted from the NCEP–NCAR reanalysis during 2008–21 as input and the TC labels obtained from the best track data, we show that both ResNet and UNet reach their maximum forecast skill at the 12–18-h forecast lead time. Moreover, both architectures perform best when using a large domain covering most of the Pacific Ocean for input data, as compared to a smaller subdomain in the western Pacific. Given its ability to provide additional information about TC formation location, UNet performs generally worse than ResNet across the accuracy metrics. The deep learning approach in this study presents an alternative way to predict TC formation beyond the traditional vortex-tracking methods in the current numerical weather prediction. Significance Statement This study presents a new approach for predicting tropical cyclone (TC) formation based on deep learning (DL). Using two common DL architectures in visualization research and a set of large-scale environments in the Pacific Ocean extracted from the reanalysis data, we show that DL has an optimal capability of predicting TC formation at the 12–18-h lead time. Examining the DL performance for different domain sizes shows that the use of a large domain size for input data can help capture some far-field information needed for predicting TCG. The DL approach in this study demonstrates an alternative way to predict or detect TC formation beyond the traditional vortex-tracking methods used in the current numerical weather prediction.

Funder

Directorate for Geosciences

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference54 articles.

1. Abadi, M., and Coauthors, 2015: TensorFlow: Large-scale machine learning on heterogeneous systems. Accessed 21 October 2023, https://www.tensorflow.org/.

2. Testing the performance of tropical cyclone genesis indices in future climates using the HiRAM model;Camargo, S. J.,2014

3. Forecast advisory for the late fall heavy rainfall/flood event in central Vietnam developed from diagnostic analysis;Chen, T.-C.,2012

4. Tropical cyclone formation guidance using pregenesis Dvorak climatology. Part I: Operational forecasting and predictive potential;Cossuth, J. H.,2013

5. A tropical cyclone genesis parameter for the tropical Atlantic;DeMaria, M.,2001

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3