An Adjoint Analysis of the Meridional Overturning Circulation in an Ocean Model

Author:

Bugnion Véronique1,Hill Chris1,Stone Peter H.1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract

Abstract Using the adjoint of a fully three-dimensional primitive equation ocean model in an idealized geometry, spatial variations in the sensitivity to surface boundary forcing of the meridional overturning circulation’s strength are studied. Steady-state sensitivities to diapycnal mixing, wind stress, freshwater, and heat forcing are examined. Three different, commonly used, boundary-forcing scenarios are studied, both with and without wind forcing. Almost identical circulation is achieved in each scenario, but the sensitivity patterns show major (quantitative and qualitative) differences. Sensitivities to surface forcing and diapycnal mixing are substantially larger under mixed boundary conditions, in which fluxes of freshwater and heat are supplemented by a temperature relaxation term or under flux boundary conditions, in which climatological fluxes alone drive the circulation, than under restoring boundary conditions. The sensitivity pattern to diapycnal mixing, which peaks in the Tropics is similar both with and without wind forcing. Wind does, however, increase the sensitivity to diapycnal mixing in the regions of Ekman upwelling and decreases it in the regions of Ekman downwelling. Wind stress in the Southern Oceans plays a crucial role in restoring boundary conditions, but the effect is largely absent under mixed or flux boundary conditions. The results highlight how critical a careful formulation of the surface forcing terms is to ensuring a proper response to changes in forcing in ocean models.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3