Deep Convective Organization, Moisture Vertical Structure, and Convective Transition Using Deep-Inflow Mixing

Author:

Schiro Kathleen A.1ORCID,Neelin J. David1

Affiliation:

1. Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, Los Angeles, California

Abstract

Abstract It is an open question whether an integrated measure of buoyancy can yield a strong relation to precipitation across tropical land and ocean, across the seasonal and diurnal cycles, and for varying degrees of convective organization. Building on previous work, entraining plume buoyancy calculations reveal that differences in convective onset as a function of column water vapor (CWV) over land and ocean, as well as seasonally and diurnally over land, are largely due to variability in the contribution of lower-tropospheric humidity to the total column moisture. Over land, the relationship between deep convection and lower-free-tropospheric moisture is robust across all seasons and times of day, whereas the relation to boundary layer moisture is robust for the daytime only. Using S-band radar, these transition statistics are examined separately for mesoscale and smaller-scale convection. The probability of observing mesoscale convective systems sharply increases as a function of lower-free-tropospheric humidity. The consistency of this with buoyancy-based parameterization is examined for several mixing formulations. Mixing corresponding to deep inflow of environmental air into a plume that grows with height, which incorporates nearly equal weighting of boundary layer and free-tropospheric air, yields buoyancies consistent with the observed onset of deep convection across the seasonal and diurnal cycles in the Amazon. Furthermore, it provides relationships that are as strong or stronger for mesoscale-organized convection as for smaller-scale convection.

Funder

U.S. Department of Energy

National Science Foundation

National Oceanic and Atmospheric Administration

University of California, Los Angeles

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference104 articles.

1. GNSS observations of deep convective time scales in the Amazon;Adams;Geophys. Res. Lett.,2013

2. Convective and stratiform components of the precipitation-moisture relationship;Ahmed;Geophys. Res. Lett.,2015

3. Geographical differences in the tropical precipitation-moisture relationship and rain intensity onset;Ahmed;Geophys. Res. Lett.,2017

4. Reverse engineering the tropical precipitation–buoyancy relationship;Ahmed;J. Atmos. Sci.,2018

5. Characteristics of strong updrafts in precipitating systems over the central tropical Pacific Ocean and in the Amazon;Anderson;J. Appl. Meteor.,2005

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3