Power-Law Scaling in the Internal Variability of Cumulus Cloud Size Distributions due to Subsampling and Spatial Organization

Author:

Neggers R. A. J.1,Griewank P. J.1,Heus T.2

Affiliation:

1. University of Cologne, Cologne, Germany

2. Cleveland State University, Cleveland, Ohio

Abstract

Abstract In this study, the spatial structure of cumulus cloud populations is investigated using three-dimensional snapshots from large-domain LES experiments. The aim is to understand and quantify the internal variability in cloud size distributions due to subsampling effects and spatial organization. A set of idealized shallow cumulus cases is selected with varying degrees of spatial organization, including a slowly organizing marine precipitating case and five more quickly organizing diurnal cases over land. A subdomain analysis is applied, yielding cloud number distributions at sample sizes ranging from severely undersampled to nearly complete. A strong power-law scaling is found in the relation between cloud number variability and subdomain size, reflecting an inverse linear relation. Scaling subdomain size by cloud size yields a data collapse across time points and cases, highlighting the role played by cloud spacing in controlling the stochastic variability. Spatial organization acts on top of this baseline model by increasing the maximum cloud size and by enhancing the variability in the number of smallest clouds. This reflects that the smaller clouds start to live on top of larger-scale thermodynamic structures, such as cold pools, which favor or inhibit their formation. Compositing all continental cumulus cases suggests the existence of a prototype diurnal time dependence in the spatial organization. A simple stochastic expression for cloud number variability is proposed that is formulated in terms of two dimensionless groups, which allows objective estimation of the degree of spatial organization in simulated and observed cumulus cloud populations.

Funder

U.S. Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3