Comparison of the Performance of the Observation-Based Hybrid EDMF and EDMF-TKE PBL Schemes in 2020 Tropical Cyclone Forecasts from the Global-Nested Hurricane Analysis and Forecast System

Author:

Hazelton Andrew12ORCID,Zhang Jun A.12,Gopalakrishnan Sundararaman2

Affiliation:

1. a Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

2. b NOAA/AOML/HRD, Miami, Florida

Abstract

Abstract Better representation of the planetary boundary layer (PBL) in numerical models is one of the keys to improving forecasts of TC structure and intensity, including rapid intensification. To meet this goal, our recent work has used observations to improve the eddy-diffusivity mass flux with prognostic turbulent kinetic energy (EDMF-TKE) PBL scheme in the Hurricane Analysis and Forecast System (HAFS). This study builds on that work by comparing a modified version of EDMF-TKE (MEDMF-TKE) with the hybrid EDMF scheme based on a K-profile method (HEDMF-KP) in the 2020 HAFS-globalnest model. Verification statistics based on 101 cases in the 2020 season demonstrate that MEDMF-TKE improves track forecasts, with a reduction in a large right bias seen in HEDMF-KP forecasts. The comparison of intensity performance is mixed, but the magnitude of low bias at early forecast hours is reduced with the use of the MEDMF-TKE scheme, which produces a wider range of TC intensities. Wind radii forecasts, particularly the radius of maximum wind speed (RMW), are also improved with the MEDMF-TKE scheme. Composites of TC inner-core structure in and above the PBL highlight and explain differences between the two sets of forecasts, with MEDMF-TKE having a stronger and shallower inflow layer, stronger eyewall vertical velocity, and more moisture in the eyewall region. A case study of Hurricane Laura shows that MEDMF-TKE better represented the subtropical ridge and thus the motion of the TC. Finally, analysis of Hurricane Delta through a tangential wind budget highlights how and why MEDMF-TKE leads to faster spinup of the vortex and a better prediction of rapid intensification.

Funder

national oceanic and atmospheric administration

office of naval research

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3