Assessing a Tornado Climatology from Global Tornado Intensity Distributions

Author:

Feuerstein Bernold1,Dotzek Nikolai2,Grieser Jürgen3

Affiliation:

1. Max-Planck-Institut für Kernphysik, Heidelberg, Germany

2. Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Wessling, Germany

3. Deutscher Wetterdienst, Offenbach, Germany

Abstract

Abstract Recent work demonstrated that the shape of tornado intensity distributions from various regions worldwide is well described by Weibull functions. This statistical modeling revealed a strong correlation between the fit parameters c for shape and b for scale regardless of the data source. In the present work it is shown that the quality of the Weibull fits is optimized if only tornado reports of F1 and higher intensity are used and that the c–b correlation does indeed reflect a universal feature of the observed tornado intensity distributions. For regions with likely supercell tornado dominance, this feature is the number ratio of F4 to F3 tornado reports R(F4/F3) = 0.238. The c–b diagram for the Weibull shape and scale parameters is used as a climatological chart, which allows different types of tornado climatology to be distinguished, presumably arising from supercell versus nonsupercell tornadogenesis. Assuming temporal invariance of the climatology and using a detection efficiency function for tornado observations, a stationary climatological probability distribution from large tornado records (U.S. decadal data 1950−99) is extracted. This can be used for risk assessment, comparative studies on tornado intensity distributions worldwide, and estimates of the degree of underreporting for areas with poor databases. For the 1990s U.S. data, a likely tornado underreporting of the weak events (F0, F1) by a factor of 2 can be diagnosed, as well as asymptotic climatological c,b values of c = 1.79 and b = 2.13, to which a convergence in the 1950–99 U.S. decadal data is verified.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference24 articles.

1. A case study of nonmesocyclone tornado development in northeast Colorado: Similarities to waterspout formation.;Brady;Mon. Wea. Rev.,1989

2. The climatology of severe thunderstorms: What we can know. Preprints.;Brooks,2000

3. On the relationship of tornado path length and width to intensity.;Brooks;Wea. Forecasting,2004

4. On some issues of United States tornado climatology.;Brooks;Mon. Wea. Rev.,1988

5. Normalized damage from major tornadoes in the United States: 1890−1999.;Brooks;Wea. Forecasting,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3