Affiliation:
1. International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, Hawaii
Abstract
Abstract
A regional model is used to study the radiative effect of boundary layer clouds over the southeast Pacific on large-scale atmosphere circulation during August–October 1999. With the standard settings, the model simulates reasonably well the large-scale circulation over the eastern Pacific, precipitation in the intertropical convergence zone (ITCZ) north of the equator, and marine boundary layer stratocumulus clouds to the south. In a sensitivity experiment with the radiative effect of liquid clouds south of the equator over the eastern Pacific artificially removed, boundary layer clouds south of the equator almost disappear and precipitation in the ITCZ is reduced by 15%–20%, indicating that the stratocumulus clouds over the southeast Pacific have both local and cross-equatorial effects.
Examination of the differences between the control and sensitivity experiments indicates that clouds exert a net diabatic cooling in the inversion layer. In response to this cloud-induced cooling, an in situ anomalous high pressure system develops in the boundary layer and an anomalous shallow meridional circulation develops in the lower troposphere over the equatorial eastern Pacific. At the lower branch of this shallow circulation, anomalous boundary layer southerlies blow from the boundary layer high toward the northern ITCZ where the air ascends. An anomalous returning flow (northerly) just above the cloud layer closes the shallow circulation.
This low-level anomalous shallow circulation enhances the subsidence over the southeast Pacific above the cloud layer, helping to maintain boundary layer clouds and temperature inversion there. Meanwhile, the strengthened cross-equatorial flow near the surface enhances moisture convergence and convection in the ITCZ north of the equator. This in turn strengthens the local, deep Hadley circulation and hence the large-scale subsidence and boundary layer clouds over the southeast Pacific. This positive feedback therefore enhances the interhemispheric climate asymmetry over the tropical eastern Pacific.
Publisher
American Meteorological Society
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献